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Abstract

This study predicts community-level poverty headcount ratios in Bolivia for
2022, using a combination of machine learning, remote sensing, and spatial
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953 communities between 2012 and 2022, the methodology successfully reveals
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are more pronounced in communities with lower initial poverty levels, while
regional disparities persist, with urban areas consistently exhibiting lower
poverty rates. The approach demonstrates the effectiveness of combining
machine learning and geospatial data to inform targeted poverty reduction
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valuable insights for policymakers seeking to address poverty at a granular
level despite data limitations.
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1. Introduction

The accurate measurement of poverty has long been a central concern for economists.

Despite significant advances, poverty quantification remains a challenging process,

shaped by choices around definitions, welfare indicators, and measurement units.

Pioneering work in this field, such as Orshansky (1969) and Galbraith (1998),

introduced the first official poverty thresholds in the United States, employing

methods like the cost of a basic food basket and household income comparisons.

Building on these early contributions, scholars such as Thon (1979), Foster et al.

(1984), Kanbur (1990), and Jenkins and Lambert (1997) have expanded poverty

measures, providing deeper insights into the phenomenon.

Yet, as noted by Atkinson (1987), poverty measurement remains complex and

contested. Atkinson emphasized the need for multidimensional approaches that

incorporate material deprivation, social exclusion, and quality of life. Such

frameworks, he argued, should reflect changing living costs and economic

conditions, further underscoring the limitations of purely monetary measures.

In response to these limitations, many researchers advocate for

multidimensional poverty measures. Bourguignon and Chakravarty (1999), Tsui

(2002), Alkire and Foster (2011), and others have developed indicators

encompassing aspects such as income, education, health, housing, and access to

services. These approaches provide a more comprehensive view of poverty and help

identify vulnerable groups, as Alkire and Foster (2011) highlighted, offering critical

information for effective poverty reduction policies.

However, in regions where traditional surveys are expensive or difficult to

conduct, remote sensing and machine learning offer promising alternatives. Studies

by Jean et al. (2016), Blumenstock (2016), Piaggesi et al. (2019), and others have

demonstrated the potential of using satellite imagery and algorithms to estimate

poverty and assess public policy impacts. While this approach presents challenges,

its ability to enhance the accuracy and timeliness of poverty data is a compelling

reason for its adoption.

In Bolivia, where community-level poverty data are scarce—only available from
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the 2012 census—the use of remote sensing and machine learning provides an

opportunity to generate new insights. This limitation, common across many

developing countries, restricts high-frequency spatial analyses of poverty, which are

crucial for timely policy intervention.

The primary aim of this study is to predict community-level poverty headcount

ratios for 2022 using machine learning algorithms and satellite data. By bridging the

gap between 2012 census data and predicted 2022 estimates, this research offers a

dynamic view of poverty trends in Bolivia. Additionally, this study serves as a

replicable model for other developing countries where spatial poverty data are

scarce or outdated. The approach leverages modern data sources and machine

learning techniques to produce high-resolution, up-to-date poverty estimates,

making it a valuable tool for countries facing similar data limitations.

Moreover, an Exploratory Spatial Data Analysis (ESDA) will be conducted to

reveal spatial patterns in community-level poverty, offering further insights that can

guide policymakers in targeting poverty alleviation efforts. While the focus is on

Bolivia, the methodology and findings can inform poverty mapping strategies in

other developing contexts, particularly where traditional data collection is costly or

logistically challenging.

2. Methods and Data

2.1 Predicting Poverty

In Bolivia, the only source of information that allows for the computation of poverty

metrics at the community level is the 2012 census. The Unsatisfied Basic Needs (UBN)

poverty headcount ratio can be constructed since the census data does not include

monetary aspects such as income.

This study proposes a methodological framework to predict the UBN poverty

headcount ratio at the community level in Bolivia for the year 2022, utilizing machine

learning algorithms and remote sensing data. This methodology can be summarized

in two steps:
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• Data: Variables describing the characteristics of the communities for the years

2012 and 2022 are generated through the processing of remote-sensed data.

• Prediction: Machine learning algorithms are trained to accurately predict the

poverty headcount ratios at the community level, using the 2012 census data

as a reference. These validated models are then applied to predict community-

level poverty in 2022.

2.1.1 Study Communities

The 2012 census records 19,420 communities in Bolivia; however, there is no official

source that establishes the geographic boundaries of these communities. Since this

study relies on information about the characteristics of the communities derived from

satellite image processing, it is necessary to define the spatial extent or concentration

of the population in these communities.

Thus, the scope of this study is limited to communities with a population greater

than 500 inhabitants, resulting in the prediction of poverty headcount ratios for 953

study communities. Households in smaller communities tend to be dispersed,

making it challenging not only to establish the potential extent of the community

but also to construct indicators of their characteristics.

The procedure for defining the extent of the study communities is detailed in

Appendix A.

2.1.2 Target Variable and Features

The target variable is the UBN poverty headcount ratio. Although data from the 2012

census is available in Bolivia, there is no official publication of poverty metrics by

UBN at the community level. Given this limitation, we processed the socioeconomic

data from the 2012 census following the methodological guidelines of Unsatisfied

Basic Needs (INE, 2015), and constructed a UBN poverty indicator that represents

the percentage of the population in a community that is in poverty because they live
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below the minimum standards to meet their basic needs.1

The UBN poverty measurement evaluates the presence or absence of essential

goods and services in households, constituting a direct and observational method for

assessing the satisfaction of basic needs. In Bolivia, the incidence of UBN poverty

is constructed from the aggregation of deficiencies in four components: Housing,

Basic services and supplies, Education, and Health. Due to the lack of community-

level information on these aspects, we resorted to collecting and processing satellite

imagery and GIS data to generate variables that approximate these determinants of

UBN poverty.

These variables are the features used to train and validate the poverty

forecasting algorithms. The following paragraphs explain the features according to

their information source.

Open Street Map Data

The use of Open Street Map (OSM) data variables as predictors of income and

poverty offers an innovative approach to addressing economic and social issues in

regions where traditional data availability may be limited (Feldmeyer et al., 2020), as

is the case in Bolivia.

Based on OSM databases, variables such as the number of banks, schools, and

hospitals within the study communities are generated for both 2012 and 2022. These

indicators reflect access to education and health services, as well as economic

opportunities, which are fundamental not only for greater access to the mentioned

services but also for the overall socioeconomic well-being and development of the

communities.

Land Use Coverage

For the years 2012 and 2022, images from the “MODIS Land Cover Type product

(MCD12Q1)” were downloaded, providing global land cover maps with a spatial

resolution of 500 meters.
1This implies that this percentage of the population falls into the categories of moderate poverty,

indigence, or marginalization, according to the parameters established in the UBN methodology.
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Based on this information, indicators are obtained for the area (in square

kilometers) of the extent in the communities corresponding to the coverages of:

Urban areas and Croplands. For example, in a community j during year t, the area

of croplands is defined as the number of pixels categorized as crops within the

community’s extent multiplied by 0.25 —since each 500-meter pixel covers an area

of 0.25 km2.

These variables can be related to the housing component of the UBN

methodology, as houses with better materials are more likely to be categorized

within urban area pixels. Furthermore, in general, changes in these land use

coverages tend to be related to changes in economic activity, and therefore in

poverty (Liu et al., 2021; Zhou et al., 2021).

Urban Settlements

The classification of urban settlements involves identifying and mapping areas

of high human development density, such as buildings and infrastructure. These

areas are strong indicators of economic activity, as they often correspond to densely

populated areas with high economic productivity, leading to lower levels of poverty.

For this study, we use the urban settlement raster layers from Bolivar (2023).

These files are based on the “Global Human Settlement Layer” but focus on

providing a binary classification of urban settlements for Bolivia in the years 2012

and 2022.2 In this framework, for year t in community j, the area of urban

settlements is defined as the number of pixels classified as urban settlements within

the community’s extent multiplied by 0.25.

Nighttime Light

Nighttime light is also employed as a potential predictor of poverty, as variations

in luminosity have proven to be adequate indicators for explaining differences at the

cross-sectional and temporal levels in income levels, and consequently, in poverty

2Bolivar (2023) predicts the classifications of urban settlements for the years 2012 and 2022 by
training a random forest algorithm. This algorithm uses 2015 GHSL images to classify 1 km pixels
as urban settlements, using data from the blue, green, red, near-infrared, and shortwave infrared 1 and
2 bands of the Landsat-8 satellite, along with nighttime light images at the pixel level.
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levels. Specifically, from the collection “VIIRS Lunar Gap Filled BRDF Nighttime

Lights Daily L3 Global 500m”, luminosity images for the years 2012 and 2022,

covering all of Bolivia, are obtained. Subsequently, for a community j in the year t,

the average luminosity intensity indicator is constructed, representing the average

of the luminosity values in the pixels located within the community boundaries.

Electricity

Various studies have highlighted the close relationship between access to

electricity and the socioeconomic well-being of communities (Foster and

Rosenzweig, 2010; Dinkelman, 2011). Likewise, in the UBN methodology for

Bolivia, access to electricity is directly included as one of its determinants. In this

regard, vector layers of the medium voltage electricity grid in Bolivia for 2012 and

2022 were obtained.

The density of this grid by community can be considered a proxy for access to

electricity, as it reflects the infrastructure and coverage of the electricity grid in a given

area. A higher density of the medium voltage grid may suggest that households and

businesses are more likely to have access to reliable electricity services. With this

information, for a community j in the year t, the medium voltage electricity grid

density indicator is constructed as the ratio between the total length (in km) of this

grid within the community’s extent and the community’s total area.

Main Roads

The effect of main roads and highways on income and poverty has been studied

extensively due to their close relationship with economic development and access to

opportunities (Banerjee et al., 2020; Bolivar, 2022). A road network facilitates the

transport of goods and services, connects rural areas with urban centers, and

improves people’s mobility, having a positive impact on economic growth and

poverty reduction. Using vector layers of the main road network in Bolivia for 2012

and 2022,3 the variable of primary road density is generated as the ratio between the

total length of these roads within the community and the community’s total area.

3This network is referred to as the ”Red Vial Fundamental”
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Time-Invariant Characteristics

Additionally, four time-invariant characteristics of the study communities are

generated: the area of the delimited community extent; and dummy variables

identifying whether the community is a population center, intermediate city, or

capital city. The use of these variables as predictors of poverty levels at the

community level is based on the idea that these initial characteristics determine

heterogeneous poverty levels.

2.1.3 Training, Validation, and Production Sets

The dataset comprises 13 features derived from remote-sensed and GIS data, as well

as time-invariant characteristics at the community level. These variables are

available for the 953 study communities in both 2012 and 2022. The target variable,

UBN poverty headcount ratio, is available for 2012. The objective is to predict

community-level poverty for 2022 using machine learning techniques.

Data from 2012, including both the target variable and features, are used to form

the training and validation sets. Seventy percent of the 2012 data is randomly

assigned to the training set (667 observations), while the remaining thirty percent is

allocated to the validation set (286 observations).

The production set for 2022 consists of the features of the 953 study

communities, which are used to predict the UBN poverty headcount ratios. To

ensure comparability and avoid bias, all variables in the training, validation, and

production sets are normalized using z-score normalization.

2.1.4 Machine Learning Algorithms

The following algorithms were selected for training and validation, with the aim of

predicting the 2022 UBN poverty. These algorithms were chosen due to their

prevalence in forecasting literature and their capability to model both linear and

non-linear relationships:

1. Ridge Regression (L2 regularization) adds a penalty proportional to the square of
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the coefficients’ L2 norm:

minimize J(β) = SSE + λ

p∑
j=1

β2
j (1)

2. Lasso Regression (L1 regularization) adds a penalty proportional to the

coefficients’ L1 norm:

minimize J(β) = SSE + λ

p∑
j=1

|βj | (2)

3. ElasticNet combines L1 and L2 penalties:

minimize J(β) = SSE + λ

α

p∑
j=1

|βj |+ (1− α)

p∑
j=1

β2
j

 (3)

4. Decision Tree Regressor recursively splits the feature space into smaller regions,

selecting at each step the feature and threshold that best splits the data to

minimize mean squared error (MSE):

MSE(R) =
1

|R|
∑
i∈R

(yi − ȳR)
2 (4)

The process continues until a stopping criterion, such as maximum depth or

minimum samples per leaf, is met.

5. AdaBoost Regressor trains a series of weak learners, adjusting sample weights to

focus on previously mispredicted data. The final model is a weighted sum of

these learners:

f(x) =

T∑
t=1

αtht(x) (5)

6. Gradient Boosting Regressor builds an ensemble of weak learners, where each

learner corrects the errors of the previous ones. The final prediction is the
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weighted sum of individual learners:

ŷi =
M∑

m=1

γmfm(xi) (6)

7. Random Forest Regression is an ensemble method that builds multiple decision

trees on random subsets of features. The final prediction is the average of all

trees’ predictions:

y′ =
1

T

T∑
t=1

ft(x
′) (7)

8. Extra Trees Regressor is similar to Random Forest but introduces more

randomness in selecting splits, resulting in diversified trees. The final

prediction is the average of all trees’ outputs:

ŷ =
1

N

N∑
i=1

fi(x) (8)

Hyperparameter tuning, primarily via k-fold cross-validation, is crucial for

optimizing model performance. This process involves iteratively selecting

hyperparameter values to maximize model performance, ensuring robustness and

avoiding overfitting. The aforementioned algorithms undergo a rigorous fine-tuning

process based on a 10-fold cross-validation method.4

2.1.5 Poverty Prediction

After training the algorithms, the Mean Squared Error (MSE), Mean Absolute Error

(MAE), and the Coefficient of Determination (R2) are calculated for the validation

set. Based on these evaluation metrics, the best-performing algorithms for predicting

UBN poverty headcount ratios are identified.

4The k-fold cross-validation process is a technique used in machine learning to evaluate the
performance and generalization ability of a model. It involves dividing the dataset into k equal-sized
subsets or folds. The model is trained and evaluated k times, each time using a different fold as the
validation set and the remaining folds as the training set.
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The following procedure is implemented to predict the UBN poverty incidence

for each community in 2022:

1. For each of the trained and validated algorithms (i, ∀ i = 1, . . . , 8), forecasts

of UBN poverty headcount ratios are obtained for both 2012 (ŷi,2012) and 2022

(ŷi,2022). The 2022 forecast utilizes the production dataset.

2. Independently for the years 2012 and 2022 (t = 2012, 2022), the weighted

geometric mean of the forecasts from all algorithms is computed. The weights

correspond to the inverse of the MSE values (αi = 1
MSEi

). Averaging

individual forecasts is an effective strategy supported by the literature to

improve the quality and reliability of predictions in regression problems

(Wolpert, 1992; Breiman, 1996; Dietterich, 2000).5

¯̂yi,t =

(
B∏
i=1

ŷαi
i,t

) 1∑
i αi

(9)

3. The difference (∆) in percentage points between the forecasts (weighted

geometric means) for 2022 and 2012 is calculated for each community.

∆i = ¯̂yi,2022 − ¯̂yi,2012 (10)

4. The final forecast of UBN poverty headcount ratios for 2022 (Υi,2022) is

determined by applying the difference calculated in step (3) to the observed

poverty data for 2012 (yi,2012). This approach ensures better comparability

between the UBN poverty headcount ratios of 2012 and 2022.

Υi,2022 = yi,2012 +∆i (11)

5The geometric mean is calculated because it is less sensitive to outliers compared to the arithmetic
mean.
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2.2 Spatial Modeling

Exploratory Spatial Data Analysis (ESDA) functions as a preliminary method for

examining spatial patterns in georeferenced data. This approach allows researchers

to identify the geographic distributions of socioeconomic phenomena prior to

performing advanced statistical modeling. ESDA incorporates various techniques

for visualizing spatial distributions, identifying atypical locations, and detecting

patterns of spatial association (Anselin, 1999).

A key aspect of ESDA is the investigation of spatial clustering and the

identification of statistically significant spatial clusters. The detection of spatial

clusters constitutes a central component of ESDA. Spatial dependence analysis in

ESDA integrates the concepts of attribute similarity and locational proximity. This

integration is founded on Tobler First Law of Geography, which states that

”everything is related to everything else, but near things are more related than

distant things” (Tobler, 1970). Spatial clusters may indicate the presence of

agglomeration economies, knowledge spillovers, or other spatially bounded

economic processes.

In the context of the ESDA framework, a global spatial dependence analysis

examines spatial randomness and clustering strength. This analysis primarily

utilizes Moran’s I statistic, which ranges from -1 to +1. Moran’s I measures the

association between values at a given location and those of neighboring areas. A

statistically significant Moran’s I value indicates the presence of spatial

autocorrelation. Positive values suggest clustering, while negative values imply a

checkerboard pattern. Local spatial dependence analysis, often derived from global

statistics, identifies specific spatial clusters and outliers. This analysis classifies

regions into four distinct groups: high-high clusters, low-low clusters, high-low

outliers, and low-high outliers.
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3. Results on Predicting Poverty

3.1 Hyperparameter Fine-tuning

The paragraphs below detail the hyperparameter tuning using 10-fold

cross-validation for the algorithms in Section 2.1.4.

1. Ridge: The regularization parameter λ was tuned over 1,000 values from 10−5

to 105 on a logarithmic scale. The optimal λ minimized the MSE.

2. Lasso: Similarly, λ was tuned over 1,000 values from 10−5 to 105, with the

optimal λ minimizing the MSE.

3. ElasticNet: Two hyperparameters were tuned: λ (1,000 values from 10−5 to

105) and α (values from 0.05 to 0.95 in increments of 0.01). The optimal values

minimized the MSE.

4. Decision Tree Regressor: Hyperparameters tuned included maximum depth

(d), minimum samples to split (mss), and minimum samples at leaf (msl), using

ranges from prior research.

5. AdaBoost Regressor: Hyperparameters tuned were maximum depth (d) from 3

to 10, number of estimators (T ) from 50 to 200, learning rate (αt) from 0.01 to 3,

and loss function (linear, squared, exponential). The optimal values minimized

the MSE.

6. Gradient Boosting Regressor: Hyperparameters tuned included learning rate

(γm) from 0.01 to 2, maximum depth (d) from 3 to 10, number of estimators (T )

from 100 to 500, and minimum samples to split (mss) from 2 to 20. Optimal

values minimized the MSE.

7. Random Forest: Hyperparameters included number of estimators (T ) from

100 to 300, splitting criterion (MSE, MAE, Friedman’s score), minimum

samples to split (mss) from 2 to 10, and use of out-of-bag samples. Optimal

values minimized the MSE.
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8. Extra Tree Regressor: Hyperparameters tuned included number of trees (T )

from 100 to 500, and parameters d, mss, and msl with out-of-bag samples.

Optimal values minimized the MSE.

Table 1 presents the performance metrics (MSE, MAE, R2) before and after

hyperparameter tuning. Linear models (Ridge, Lasso, ElasticNet) showed weaker

predictive power compared to non-linear models (Decision Tree, AdaBoost,

Gradient Boosting, Random Forest, Extra Trees).

Extra Trees and Gradient Boosting performed best post-tuning, with the lowest

MSE (0.125, 0.127) and MAE (0.273, 0.278), and highest R2 (0.885, 0.884). Nonetheless,

Decision Tree, AdaBoost and Random Forest also performed well.

These results highlight the strengths of boosting techniques in managing

complex data relationships and improving prediction accuracy through iterative

error correction.

3.2 Community-Level Poverty in 2022

Before analyzing the UBN poverty forecasts for 2022 and comparing them with the

2012 data, it is important to recall that this study focuses on a subset of 953

communities. These communities were selected due to their population sizes

exceeding 500 individuals in 2012, which facilitated precise geographical

delineation. Beyond this specific sample, the results aim to demonstrate the

effectiveness of the proposed methodology in predicting poverty rates at a fine

geographical scale.

Figure 1 displays violin plots representing the distribution of community-level

UBN poverty headcount ratios, using observed data for 2012 and predicted values

for 2022. The results indicate a significant shift in the distribution of UBN poverty

between 2012 and 2022 among the studied communities. In particular, the median

UBN poverty headcount ratio decreased from 56.7% in 2012 to 41.8% in 2022, a

notable improvement of 14.9 percentage points.

The violin plots illustrate key changes in the distribution of community-level

UBN poverty headcount ratios. In 2022, the distribution is narrower, particularly at
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Algorithm Pre-tuning Post-tuning (10-fold cross-validation)

MSE MAE R2 MSE MAE R2 Hyperparameters

Ridge 10.772 0.745 −8.870 0.856 0.727 0.215 λ = 20.541

Lasso 1.092 0.883 −0.000 0.847 0.736 0.224 λ = 0.05

ElasticNet 1.092 0.883 −0.000 0.853 0.728 0.218
λ = 0.05
α = 0.05

DT 0.224 0.377 0.776 0.132 0.288 0.879
d = 3

mss = 13
msl = 4

ADA 0.169 0.336 0.845 0.135 0.284 0.877

d = 7
αt = 2.6

loss = Exponential
T = 185

GBR 0.128 0.276 0.883 0.127 0.278 0.884
γm = 0.07
mss = 10

RF 0.137 0.285 0.874 0.137 0.285 0.875
T = 225

out-of-bag samples = True
criterion = Friedman MSE

ET 0.145 0.289 0.860 0.125 0.273 0.885
d = 14

out-of-bag samples = True

Table 1: Forecast Evaluation and Fine-tuned hyperparameters for the validation set

Note: Not all the hyperparameters described in the preceding paragraphs are included. Those excluded were
assigned the default values of the scikit-learn functions, which proved to be the most suitable.
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lower poverty levels, suggesting a reduction in the spread of poverty rates. This

change indicates a convergence towards lower poverty levels among a greater

number of communities. Furthermore, the interquartile range has contracted in

2022, with a more pronounced reduction in the first quartile compared to 2012. This

implies a significant improvement at the lower end of the poverty distribution, with

fewer communities experiencing extremely high poverty levels. Additionally, the

2022 distribution appears more symmetric, suggesting a more balanced distribution

of poverty levels across communities.

Figure 1: Distribution of UBN Poverty Headcount Ratios, 2012–
2022

Figure 2 shows that the majority of the studied communities have a lower UBN

poverty headcount ratio in 2022 compared to 2012. Specifically, the forecasts for 2022

indicate that 80% of the communities (763 out of 953) reduced their poverty levels,

while 20% (190 communities) experienced an increase in poverty levels relative to

2012.

A key insight from Figure 2 is that the communities with the most significant

reductions in poverty headcount ratios between 2012 and 2022 were those with
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Figure 2: Scatter Plot of UBN Poverty Headcount Ratios, 2012–2022

poverty rates —approximately— below 60% in 2012. Conversely, communities that

were more disadvantaged in 2012, with poverty incidences above 60%, exhibited a

more moderate reduction in poverty levels.

As one of the study’s objectives is to map the 2022 UBN poverty headcount

ratios, Figure 3 spatially displays these ratios across the studied communities. This

geospatial analysis reveals distinct patterns in the distribution of community-level

poverty in Bolivia. The communities with the lowest poverty rates are

predominantly located in urban areas, particularly in capital cities and their

surrounding regions. For example, La Paz (14.9%), Tarija (17.9%), and Sucre (20.3%)

are notable for having the lowest poverty headcount ratios among the capital cities

in 2022.

In contrast, the most impoverished communities are primarily found in

dispersed rural areas, especially in the highland regions of the departments of La

Paz and Oruro, as well as in the department of Cochabamba.6 There are 69

6Departments are the Level 2 Administrative Regions; they are equivalent to states.
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Figure 3: 2022 Community-level Poverty Headcount Ratios
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communities where more than 90% of the population lives in poverty, with 50 of

these communities located in the departments of La Paz, Oruro, and Cochabamba.

In 2022, the five communities most affected by poverty are Rancho Nuevo

(Department of Santa Cruz), Los Yuquis (Department of Santa Cruz), Sacari

(Department of Chuquisaca), Chullchungani (Department of Cochabamba), and

Ichocollo (Department of Cochabamba), all with a UBN poverty headcount ratio

exceeding 98%. These findings underscore the importance of the methodology in

identifying the most vulnerable communities.

Although the map provides a cross-sectional view of poverty levels in 2022, a

more valuable perspective is the change in poverty headcount ratios between 2012

and 2022. Figure 4 presents a visual representation of these changes across the 953

communities, using a color gradient to indicate the percentage point change in

poverty levels. Notably, communities in capital cities have experienced moderate

reductions in poverty, typically ranging from -1 to -3 percentage points.

However, several communities, particularly in the department of Santa Cruz and

the northeastern part of the department of Cochabamba, have seen substantial

decreases in their UBN poverty headcount ratios between 2012 and 2022.

A remarkable example is the community of “Puerto Perez” in the department of

La Paz, which achieved a significant reduction of -31.8 percentage points in UBN

poverty incidence, decreasing from 56.9% in 2012 to 25.1% in 2022. Conversely, the

community of “Huanuni” in the department of Oruro experienced a significant

increase in poverty levels, rising by 9.6 percentage points compared to 2012.

The map also highlights that communities near capital cities or economic hubs

tend to show more significant progress in poverty reduction. For instance, urban and

peri-urban communities around the cities of Santa Cruz and La Paz have performed

above average in reducing poverty. For the rest of the study communities, the spatial

distribution of changes in UBN poverty headcount ratios reveals some regional and

intra-departmental heterogeneity.
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Figure 4: Change in Community-level Poverty Headcount Ratios (2022 vs. 2012)
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3.3 Prediction Accuracy

The previous section analyzed the results of the 2022 UBN poverty forecasts for the

studied Bolivian communities. We now delve deeper into evaluating the accuracy of

these predictions. Figure 5 illustrates the fit between the observed communal

poverty headcount ratios for 2012 and their predicted values (Υi,2022), following the

procedure outlined in subsection 2.1.5.

As is customary in the forecasting literature, there is an remarkable fit for the

training set predictions (R2 = 0.954). Importantly, a significant level of fit is also

achieved in the validation set (R2 = 0.887), indicating only a minor discrepancy

compared to the training data.

Figure 5: Observed vs. Predicted Data

Note: The dashed black line represents a 45° diagonal line indicating a perfect fit.

The plot also reveals an interesting pattern in the predictions. Generally, for

communities with relatively low poverty rates, the forecasts tend to be slightly

overestimated, as indicated by the regression lines lying above the 45° diagonal line.

Conversely, for communities with higher poverty levels, the forecasts tend to be
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slightly underestimated, as shown by the regression lines below the 45° diagonal

line in this part of the plot.

In recent years, the use of machine learning and remote sensing data to predict

poverty has attracted significant attention in academia. The current study, which

applies machine learning techniques to satellite images, Open Street Maps, and other

geospatial data, achieved a remarkable R2 of 0.887 in predicting poverty incidence.7

This result not only aligns with but also surpasses the performance of several other

studies employing similar methodologies.

For example, Chi et al. (2022) reported R2 values ranging from 0.54 to 0.96 for

wealth index predictions using a combination of satellite, phone, and Facebook data.

Yeh et al. (2020) achieved R2 values between 0.75 and 0.83 by applying deep

learning to satellite imagery for asset wealth prediction. In contrast, Hersh et al.

(2020) reported lower R2 values between 0.13 and 0.36 when predicting poverty

incidence using satellite imagery, indicating variability in performance depending

on context and data sources.

Further comparisons include studies by Martinez Jr (2020) and Steele et al.

(2017), which explored poverty incidence and wealth indices using a combination of

machine learning, deep learning, and hierarchical Bayesian geostatistical models,

yielding R2 ranges of 0.42 to 0.53 and 0.64 to 0.78, respectively. Notably, Engstrom

et al. (2017) used linear regression with satellite imagery, achieving R2 values

between 0.60 and 0.61, while Jean et al. (2016) reported R2 values between 0.55 and

0.75 using deep learning techniques. The study by Blumenstock et al. (2015), which

utilized machine learning with mobile phone metadata, stands out with an R2 of

0.916, demonstrating the high predictive power of mobile data for socio-economic

indicators.

Overall, the current study’s forecast accuracy is notable, particularly given the

comparative analysis, underscoring the strength of integrating diverse geospatial

data and machine learning techniques in poverty prediction.

7It should be noted that this predictive performance may not necessarily extrapolate to other
communities, either within or outside Bolivia.
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3.4 Feature Importance

The proposed methodology allows for analyzing the significance of various features

in predicting community-level UBN poverty headcount ratios. Table 2 presents the

feature importance scores, with a focus on the results from the Extra Trees Regressor

(ET), the algorithm with the highest predictive accuracy among those evaluated.

Feature Ridge Lasso ENet DT ADA GBR RF ET

Number of Banks 0.0 0.0 0.0 84.3 75.8 78.9 73.7 39.4
Number of Schools 21.2 19.5 20.7 15.2 6.9 15.5 13.7 27.1
Population Center 40.4 35.7 39.5 0.0 0.8 0.4 0.6 11.7
Intermediate City 18.6 15.2 18.0 0.0 0.2 0.0 0.1 4.2
Average Luminosity 6.7 4.4 6.8 0.2 4.5 1.0 3.4 3.8
Area 0.0 0.0 0.0 0.0 3.6 0.5 2.3 2.9
Primary Road Density 9.4 8.4 9.6 0.0 2.8 1.6 1.9 2.6
Number of Hospitals 0.0 0.0 0.0 0.0 0.7 0.2 0.4 2.1
Electricity Grid Density 0.0 0.0 0.0 0.0 2.8 1.0 2.3 1.8
Area of Urban Coverage 0.0 0.0 0.0 0.3 0.9 0.4 0.8 1.6
Area of Urban Settlements 0.0 0.0 0.0 0.0 0.5 0.4 0.4 1.2
Area of Croplands Coverage 3.3 0.0 3.1 0.0 0.7 0.2 0.5 1.0
Capital City 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6

Table 2: Feature Importance

The number of banks is the most significant feature, with an importance score of

39.4. This highlights the crucial role of financial services in reducing poverty. Banks

provide access to essential financial resources, such as credit and savings, which are

vital for economic growth and improving living standards. Communities with more

banks are likely to experience lower poverty levels due to better financial access.

The number of schools is the second most important feature, with a score of 27.1.

Education is a fundamental factor in poverty reduction, as it enhances individuals’

skills and employment prospects. A higher number of schools indicates better

educational infrastructure, contributing to lower poverty rates by equipping

individuals with the necessary skills for economic participation.

The population center feature, with an importance score of 11.7, indicates the

impact of urbanization on poverty levels. Population centers typically have better

access to infrastructure, services, and economic opportunities, leading to improved
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living conditions. Similarly, intermediate city, with a score of 4.2, reflects the

importance of urban areas as hubs of economic and social activity. These areas

provide better access to markets and services, fostering regional development and

reducing poverty.

Average luminosity, with a score of 3.8, serves as a proxy for economic activity

and infrastructure. Higher luminosity levels suggest greater economic development

and access to electricity, which are associated with lower poverty levels.

Other features, such as area, primary road density, number of hospitals, electricity

grid density, and areas of urban coverage, urban settlements and croplands coverage,

have lower importance scores but still contribute to the model’s predictions. These

features represent various aspects of infrastructure, public services, and land use,

which influence the socioeconomic conditions of a community and, consequently, its

poverty levels.

4. Results on Spatial Modeling

Figure 6 shows the spatial connectivity structure of the regions in this study. The

network is constructed using a Thiessen polygon diagram. Thiessen polygons

connect spatial points such that each location within a polygon is closest to its

central point. Nodes represent spatial units, with lines indicating adjacency

relationships. The queen contiguity approach, derived from this structure, defines

neighbors as units sharing borders or corners. From this structure, one can observe

that Bolivia’s central and southern regions exhibit higher network density. The

spatial connectivity structure of Figure 6 enables the identification of neighbors for

each location, which is essential for spatial statistics and autocorrelation analysis.

Figure 7 presents a spatial analysis of poverty in Bolivia using Moran’s I statistic

and local indicators of spatial association (LISA). The left panel (a) shows a Moran

scatterplot with a Moran’s I value of 0.27, indicating positive spatial autocorrelation

of poverty across regions. The scatterplot is divided into four quadrants

representing different spatial relationships: high-high (HH), low-low (LL), low-high

(LH), and high-low (HL). The right panel (b) maps these relationships onto Bolivia’s
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Figure 6: Identification of regional neighbors based on
Thiessen polygons
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geography, highlighting the location of spatial clusters and outliers. Red areas

represent high-poverty clusters (HH), dark blue areas show low-poverty clusters

(LL), light blue indicates low-poverty areas surrounded by high-poverty neighbors

(LH), and orange represents high-poverty areas surrounded by low-poverty

neighbors (HL). The map reveals that poverty in Bolivia has distinct spatial patterns,

with clusters of high poverty particularly visible in parts of Santa Cruz,

Cochabamba, and the south of La Paz. This analysis helps identify areas for targeted

poverty reduction interventions and understand the spatial distribution of poverty

in Bolivia in 2012.

Figure 7: Patterns of spatial dependence in 2012

Figure 8 depicts Bolivia’s spatial poverty patterns in 2022 using a Moran

scatterplot and a spatial clusters map. The Moran’s I value of 0.24 signifies positive

spatial autocorrelation, indicating clustering of areas with similar poverty levels.

Comparison of 2022 and 2012 poverty patterns reveals subtle yet significant changes

over the decade. The Moran’s I value decreased from 0.27 to 0.24, suggesting a slight

reduction in overall spatial autocorrelation of poverty. While the general poverty

cluster distribution remains similar, notable shifts include an expanded

high-poverty cluster in Santa Cruz and reduced low-poverty areas around La Paz.

The 2022 map shows more scattered and numerous low-high and high-low outliers,

suggesting increased local variability in poverty levels. These changes reflect a
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complex evolution of Bolivia’s poverty landscape, with varying regional progress

and challenges.

Figure 8: Patterns of spatial dependence in 2022

Figure 9 depicts spatial dependence patterns in Bolivia’s poverty changes from

2012 to 2022. The Moran scatterplot exhibits a Moran’s I value of 0.04, indicating

minimal positive spatial autocorrelation in poverty change. This weak correlation

suggests that poverty level changes are not strongly clustered. The spatial

dependence map reveals dispersed cluster patterns across Bolivia, with notable

High-High areas in parts of Santa Cruz, Tarija, and Potosi. A significant Low-Low

cluster is observed in Beni, alongside various outliers throughout the country.

Overall, this fragmented pattern indicates geographically diverse outcomes of

poverty reduction efforts between 2012 and 2022. Some regions demonstrate

improvement, while others experience increased poverty, underscoring the complex

and localized nature of Bolivia’s economic development during this period.

5. Concluding Remarks

This study set out to predict community-level UBN poverty headcount ratios for

Bolivia in 2022, using machine learning algorithms and remote sensing data, in the

absence of recent census data. By employing a novel combination of satellite
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Figure 9: Patterns of spatial dependence over the 2012-2022 period

imagery, Open Street Map data, and advanced machine learning techniques, this

research successfully provides high-resolution, community-specific poverty

estimates that offer both spatial and temporal insights into poverty dynamics across

Bolivia.

The results demonstrate the robustness of machine learning

algorithms—particularly the Extra Trees Regressor—in accurately predicting

poverty headcount ratios. The importance of features such as the number of banks,

schools, and population centers highlights the critical role of infrastructure,

education, and access to financial services in shaping poverty outcomes. These

findings align with established theoretical perspectives on the multidimensional

determinants of poverty, confirming the relevance of these variables as proxies for

economic well-being at the community level.

Moreover, the analysis reveals significant spatial disparities in poverty reduction

between 2012 and 2022, with urban communities and those near economic centers

generally experiencing more pronounced declines in poverty levels compared to

rural or remote areas. This spatial heterogeneity underscores the persistent

challenges of rural poverty in Bolivia and highlights the need for targeted policies

aimed at addressing the specific needs of the most vulnerable communities.

One of the key contributions of this study is the development of a replicable
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framework for predicting poverty in contexts where traditional survey data are

limited or outdated. The approach not only bridges the data gap between official

census years but also offers a scalable model that can be applied to other developing

countries facing similar challenges. By utilizing widely accessible remote sensing

data and machine learning tools, this research provides a cost-effective and efficient

means of producing up-to-date poverty estimates at a high geographical resolution.

In addition to meeting its primary objective of forecasting community-level

poverty, this study also advances the literature on spatial poverty analysis by

integrating Exploratory Spatial Data Analysis (ESDA). The spatial patterns

uncovered in this study, particularly the concentration of poverty in rural and

highland regions, offer valuable insights for policymakers. These findings highlight

the importance of spatially disaggregated poverty data in designing more effective

and equitable poverty alleviation programs.

In conclusion, this study contributes to both the academic discourse on poverty

measurement and the practical domain of policy formulation. By leveraging

machine learning and remote sensing, the study not only addresses the specific data

challenges in Bolivia but also provides a template for future poverty research in

other contexts. The insights gained from this analysis can serve as a foundation for

evidence-based policy interventions aimed at reducing poverty and improving

living standards across communities, particularly in underdeveloped regions where

traditional data sources are scarce.
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A. Extent of Study Communities

The procedure to define the extent of the study communities is as follows:

1. A GIS file with the point location (latitude and longitude) of the communities

across the Bolivia’s territory was obtained. This data includes a community

identifier that facilitates the matching with other databases such us the census

data.

2. Only communities with a population greater than 500 inhabitants are kept.

3. A vector file with a grid of 500-meter by 500-meter cells covering the entire

Bolivian territory was created.

4. A vector layer with the polygonal delimitation of the communities in Bolivia for

the year 2001 was obtained as an additional reference on the potential extent of

these geographic units8.

5. In the vector file of the grid from step 3, cells that do not meet the following

requirements were removed:

a. Being within one of the municipalities containing the 953 selected

communities.

b. Being within one of the polygons from the 2001 community vector file,

specifically those corresponding to the 953 selected communities.

6. Raster layers with satellite imagery information were downloaded to map the

possible extent or spatial concentration of the population in the 953 selected

communities more accurately. These layers include:

a. Nighttime luminosity: A raster file with average luminosity values in

500-meter pixels for the years 2012 and 2022 was used. These files were

processed from the “VIIRS Lunar Gap Filled BRDF Nighttime Lights

Daily L3 Global 500m” collection from NASA’s Land Processes

8This vector layer is available on the GeoBolivia portal.



33

Distributed Active Archive Center (LP DAAC), providing luminosity

images corrected for moonlight and atmospheric effects.

b. Urban and built-up areas: Raster files from the “MODIS Land Cover Type

Yearly Global 500m” product were obtained, offering global maps of land

cover usage with annual frequency and a spatial resolution of 500 meters.

The MCD12Q1 legend of the International Geosphere-Biosphere

Programme (IGBP) was used to define 17 land use categories, including

urban and built-up areas.

c. Global Human Settlement Layer: A raster file from the Global Human

Settlement Layer (GHSL) for 2015 was used, providing information on

urbanized areas, population density, and other urban characteristics with

a spatial resolution of 1,000 meters.

7. Remaining cells in the vector file grid (step 5) that do not meet at least two of

the following three requirements were removed:

a. Having a luminosity intensity of at least 0.5.

b. Being classified as “urban and built-up areas” in the “MODIS Land Cover

Type Yearly Global 500m” raster layer.

c. Being classified as “low or high-density urban clusters” in the “Global

Human Settlement Layer” raster layer.

For example, in Figure A.1, some pixels from the nighttime luminosity raster

images (A.1-b), land use classified as urban/built-up area (A.1-c, in purple), and

human settlements (A.1-d) overlap with areas that would cover 2 communities

with populations between 1,000 and 5,000 inhabitants.

8. Each remaining cell was assigned a community identifier according to the

municipality in which it is located and its proximity to the georeferenced

points of the 2012 census communities and the 2001 community polygons.

9. Finally, for each community, its extent is defined as the area covered by the

cells with the corresponding geographic identifier. For example, in Figure A.2,
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(a) Satellite image (b) Nighttime luminosity

(c) Land use (d) Global Human Settlement Layer

Figure A.1: Raster Layers to Define Community Extent

Source: Own elaboration with data from Google, NASA, MODIS, and European Commission.

the extent for the community Corani Pampa, belonging to the municipality of

Colomi in Cochabamba, is shown. This community had a population of 940

inhabitants in 2012. Although some houses and infrastructures in this

community are dispersed, the implemented methodology seems to effectively

captures these aspects.

It is essential to highlight that the methodology used to define the extents of the

953 study communities captures the concentration of population, infrastructure, and

economic activity in these geographic units. This information is fundamental for

generating the community characterization variables explained in the next section.

It is important to emphasize that defining the extents of the study communities
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Figure A.2: Extent of the Corani Pampa community

Own elaboration.

does not aim to provide references about the legal boundaries of the communities in

Bolivia.


